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1. Motivation &

= Quantum computers solve factoring and discrete log problem

= Code-based cryptosystems McEliece and Niederreiter resist
guantum attacks and can outperform classical cryptosystems

= Main drawback: large keys (often = 50 kByte) vs. embedded devices

= Misoczki et al. proposed quasi-cyclic medium-density parity check
codes (QC-MDPC) (4800 bit pk, 80 bit security level) [MTSB12]
= (Open questions

* How does QC-MDPC MckEliece perform
on embedded devices?

 Which decoders should be used?
Can known decoders be improved?
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2. Background on MDPC Codes

= QOriginal McEliece uses binary Goppa codes
= Main problem: large keys

= Many proposals to use codes with more compact representations,
several were broken

= [MRS00,BCG06,BCG07,BC07,BBCO8] say: use low-density parity
check (LDPC) codes or even quasi-cyclic LDPC codes!

= [OTD10] cryptanalyzed some (QC-)LDPC proposals

= [MTSB12] say: use (QC-)MDPC codes, they resist known LDPC
attacks and give small keys!

= Not broken (yet?)
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2. Background on MDPC Codes M

Definition 1 (Linear codes).
A binary (n,r)-linear code C of length n, dimension (n — r) and co-
dimension 1, is a (n — r)-dimensional vector subspace of F}'.

Fz(n—r)n

It is spanned by the rows of a matrix G € , called a generator

matrix of C.
The generator matrix is the kernel of a matrix H € F; ™ and called the

parity-check matrix of C.

The codeword ¢ € C of a vector m € FZ("_T) is given by ¢ = mG. Given
a vector e € FJ', we obtain the syndrome s = He! € FJ.
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2. Background on MDPC Codes M

Definition 2 (Quasi-cyclic codes).

A (n,r)-linear code is quasi-cyclic (QC) if there is some integer ng such
that every cyclic shift of a codeword by n, positions is again a
codeword.

When n = nyp, for some integer p, it is possible and convenient to
have both generator and parity check matrices composed by p * p
circulant blocks.

A circulant block is completely described by its first row (or column)
and the algebra of p * p binary circulant matrices is isomorphic to the
algebra of polynomials modulo xP — 1in F,.
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2. Background on MDPC Codes M

Definition 3 (MDPC codes).
A (n,r,w)-MDPC code is a linear code of length n and co-dimension r
admitting a parity check matrix with constant row weight w.

= |f MDPC codes are quasi-cyclic, they are called
(n,r,w)-QC-MDPC codes

= | DPC codes typically have small constant row weights
(usually, less than 10)

= For MDPC codes, row weights scaling in 0(\/7’1 * log(n)) are
assumed
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2. (QC-)MDPC McEliece

= t-error correcting (n,r7,w)-QC-MDPC code withn =ngp, r=p

Key Generation:

1. Pick random words h; € F3' of weight w; such that w = Zno ",
Define h, as first row of parity check matrix block H;

Obtain remaining r — 1 rows by 7 — 1 quasi-cyclic shifts of h;

H = [Hy|Hq| ... |Hp,—1] is composed of n, circulant blocks

Lok DN

Generator matrix G is of systematic form G = (I|Q),
[ ( SLOMA
o x H)'

\(H,;;_lé"ﬂno_zf )
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2. (QC-)MDPC McEliece

Encryption:

To encrypt m € Fz(n_r) into x € F}' select error vector e € F;' with
wt(e) < t at random. Then compute x <« mG + e.

Decryption:

Let Wy be a t-error-correcting MDPC decoding algorithm. Compute
mG < Wy (mG + e) and extract m from the first (n — r) positions
of mG.

Parameters for 80-bit equivalent symmetric security [MTSB12]:
ng = 2,n =9600,r =4800,w = 90,t = 84

CBC 2013 | Secure Hardware | Stefan Heyse, Ingo von Maurich, Tim Glineysu



Overview

. Motivation

. Background

. Efficient Decoding of MDPC Codes
. Implementing QC-MDPC MctEliece

. Results

O U1 B W N -

. Conclusions

CBC 2013 | Secure Hardware | Stefan Heyse, Ingo von Maurich, Tim Glineysu



3. Efficient Decoding of MDPC Codes M

= Decoding is usually the most complex task in CBC
= Many LDPC/MDPC decoding algorithms, we focus on bit-flipping
= General decoding principle

1. Compute syndrome s of the received codeword x

2. Check the number of unsatisfied parity-check-equations #,,,,
associated with each codeword bit

3. Flip each codeword bit that violates more than b equations

" |terate until syndrome becomes zero or a predefined maximum of
iterations is reached (decoding failure)

= Main difference between decoders is how threshold b is computed
e (Pre-)compute new b for each iteration
* b =maxyy,,

* b =maxy,. — 9, for some small 6
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3. Efficient Decoding of MDPC Codes

Decoder A [MTSB12]
1. Compute the syndrome

2. Compute #,,,,. for each codeword bit to determine max,,

3. Compute #,,,. again and flip all codeword bits that violate
= Maxy,. — 0 equations

4. Recompute syndrome and compare to zero

Decoder B [Gal62]
1. Compute the syndrome

2. Compute #,,,, for each bit and directly flip the current codeword
bit if #,,,,¢ is larger than a precomputed threshold b,

3. Recompute syndrome and compare to zero
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3. Efficient Decoding of MDPC Codes M

Observations

= Decoder A and B recompute the syndrome after each iteration

= Syndrome computation is expensive!

Optimizations

" If #,,. exceeds the current threshold, the corresponding codeword
bit j is flipped and the syndrome changes

= But the syndrome does not change arbitrarily!
Snew = Sota T hj, where h; is the row of H corresponding to bit j

= By keeping track of which codeword bits are flipped we can update
the syndrome at runtime

— Recomputation is not required anymore
— We always decode with a up-to-date syndrome
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3. Efficient Decoding of MDPC Codes M

= Derived several decoders
e Direct vs. temporary syndrome update method
« Combined with different threshold techniques
* Precomputed b; as proposed by [MTSB12]
* For b = max,,. — 0, chosing 6 = 5 requires the least iterations
e Constantly check if syndrome becomes zero

= Measured 1000 random QC-MDPC codes with
ng = 2,n =9600,r =4800,w = 90,t = 84
and 100,000 random decoding tries for each decoder
= Decoding failure if no success within 10 iterations

= Measured on a Intel Xeon E5345 CPU®2.33 GHz
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3. Efficient Decoding of MDPC Codes M

= The following decoders require the least amount of iterations and
provide the best decoding failure rates

Decoder D
1. Compute the syndrome

2. Compute #,,,,. for each bit, directly flip the current codeword bit j if
#upc exceeds precomputed threshold b; and add h; to the
syndrome

Decoder F

= Same as D, but additionally compares the syndrome to zero after
each update and aborts immediately if it becomes zero
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3. Efficient Decoding of MDPC Codes E

Average decoding iterations
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3. Efficient Decoding of MDPC Codes

Decoding time
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3. Efficient Decoding of MDPC Codes &

Decoding failure rate
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3. Efficient Decoding of MDPC Codes

Decoding failure rate (zoom)
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4. Implementation Platforms &

= Reconfigurable Hardware: Xilinx Virtex-6 FPGA
* Powerful, up-to-date FPGA

* (Ten-)thousands of slices, each slice contains four 6-input lookup tables
(LUTs), eight FFs, and surrounding logic

 Embedded resources such as block memories (BRAM) and digital signal
processors (DSP)

" Embedded microcontroller: Atmel AVR ATxmega

* Popular low-cost 8-bit microcontroller
* Wide range of cryptographic and non-cryptographic applications
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4. Implementing QC-MDPC McEliece &

= Recall, parameters for 80-bit security are
ng = 2,n =9600,r = 4800,w = 90,t = 84

Data sizes

= 4800-bit public key

= 9600-bit sparse secret key, 90 bits set
= 4800-bit plaintext

= 9600-bit ciphertext

= Secret key and ciphertext consist of two separate 4800-bit blocks
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4. FPGA Design Considerations

= QOverall FPGA design goal: high speed
= Relatively small keys — store operands directly in logic, no BRAMSs

= Sparsity of secret polynomials is not exploited
* Requires to implement 90 13-bit counters
* Increment all counters to generate the next row

 E.g., when computing the syndrome we would have to build
a 4800-bit vector from the counters and XOR this vector to the %

current syndrome

* Alternatively read content of each counter and flip corresponding %
bits in the current syndrome

" |Implemented decoder D, early exit would require variable shifts

= Simple I/O interface keeps overhead small to get close to the actual
resource consumptions

= TRNG for random error generation is out-of-scope

N S
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4. QC-MDPC McEliece FPGA Implementation M

QC-MDPC Encryption

= Given first 4800-bit row g of G and message m, compute ¢ = mG
and afterwardsx =c + e

= @G is of systematic form - first half of ¢ is equal tom
=  Computation of redundant part Q
* |terate over message bit by bit and rotate g accordingly

* If message bit is set, XOR current g to the redundant part
* 3x4800-bit registers for g, m, and Q
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4. QC-MDPC McEliece FPGA Implementation

QC-MDPC Decryption
= Syndrome computation s = Hx”, with H = [Hy|H{]
* Given 9600-bit h = [hy|hy] and x = [xg|x4]

* Sequentially iterate over every bit of x5 and x4 in parallel,
rotate hy and h; accordingly

* If bitin x, and/or x4 is set, XOR current hy and/or h; to intermediate
syndrome

= s =07
* Logical OR tree, lowest level based on 6-input LUTs

* Added registers after the second level to minimize critical path
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4. QC-MDPC McEliece FPGA Implementation

QC-MDPC Decryption
= Count #,,,. for current row h = [hy|h,]
— Compute HW(s AND h;), HW(s AND h,)
* Split AND results into 6-bit blocks and lookup HW
* Adder tree with registers on every level accumulates overall HW
e Parallel vs. iterative design
= Bit-flipping step
* If HW exceeds threshold b; the corresponding bit in codeword x

and/or x4 is flipped
* Syndrome is updated by XORing current secret poly hy and/or h4

* Generate next row h and repeat until all rows of H have been checked
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4. Microcontroller Design Considerations

Overall microcontroller design goal: small memory footprint
Encoder

= Straightforward: copy, rotate and accumulate

= Rolled vs. unrolled public key rotation

= Whole message is not required to start encryption

= Encrypt-while-transfer allows to hide part of the encryption time
Decoder

" Generating the next h, requires to shift 600 bytes

= But hy and hy are sparse, storing positions of set bits just needs
45*2=90 byte

= Shifting requires to increment 45 counters
=  Adding sparse to full polynomial by flipping 45 bits
= Decoder F is used
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5. FPGA Results

= Xilinx ISE 14.5

= Average decoding cycles

* |terative:

4800 + 2 + 2.4002 * (9,620 + 2)
* Non-iterative: 4,800 + 2 + 2.4002 * (4,810 + 2)

Post-PAR for Xilinx Virtex-6 XC6VLX240T

27,896.7 cycles
16,351.8 cycles

Aspect Encoder Decoder (iterative) Decoder (non-iterative)
FFs 14,426 (4%) 32,974 (10%) 46,515 (15%)
LUTs 8,856 (5%) 36,554 (24%) 46,249 (30%)
Slices 2,920 (7%) 10,271 (27%) 17,120 (45%)

Irequency

351.3 MHz

222.5 MHz

190.6 MHz

Time/Op 13.66 ps 125.38 ps 85.79 s
Throughput 351.3 Mbit /s 38.3 Mbit /s 55.9 Mbit /s
Encode 4,800 cycles E -

Compute Syndrome
Check Zero
Flip Bits

1.800 cycles
2 cycles
9,620 cycles

4,800 cycles
2 cycles
4,810 cycles

Overall average

4,800 cycles

27,896.7 cycles

16.351.8 cycles
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5. FPGA Comparison

= Performance evaluation: Time/operation vs. Mbit/s
= PKsize: 0.59 kByte vs. 100.5 kByte [37], 63.5 kByte [16][21]

Scheme Platform f [MHz] Bits Time/Op Cycles Mbit/s FFs LUTs Slices BRAM
This work (enc) XC6VLX240T 351.3 4,800 13.66ps 4,800  351.3 14,426 8,856 2,920 0
This work (dec) XC6VLX240T 190.6 4,800 85.79ps 16,352 55.9 46,515 46,249 17,120 0
This work (dec iter.) XC6VLX240T 222.5 4,800 125.38ns 27,897 38.3 32,974 36,554 10,271 0
McEliece (enc) [37] XC5HVLXI110T 163 512 500 ps n/a 1.0 n/a n/a 14,537 75
McEliece (dec) [37]  XCHVLX110T 163 512 1,290 ps n/a 0.4 n/a n/a 14,537 i
McEliece (dec) [16]  XCHVLX110T 190 1,751 500 s 94,249 3.5 n/a n/a 1,385 5
Niederreiter (enc) [21] XC6VLX240T 300 192 0.66 ps 200  290.9 875 926 315 17
Niederreiter (dec) [21] XC6VLX240T 250 192 58.78 pus 14,500 3.3 12,861 9,409 3,887 9
Ring-LWE (enc) [17] XC6VLX240T n/a 256 8.10 pis n/a 15.8 143,396 298,016 n/a 0?
Ring-LWE (dec) [17] XC6VLX240T n/a 256 8.15ps  n/a 157 65,174 124,158 n/a 02
NTRU (enc/dec) [23] XCV1600E 62.3 251 1.54/1.41ps 96/88 163/178 5,160 27,292 14,352 0
ECC-P224 [18] XC4VFX12 487 224 365.10ps 177,755 0.61 1,892 1,825 1,580 113
ECC-163 [33] XCHVLXS85T 167 163 8.60 s 1436 18.9 n/a 10,176 3,446 0
ECC-163 [34] Virtex-4 45.5 163 12.10 ps 552 13.4 n/a n/a 12,430 0
ECC-163 [12] Virtex-11 128 163 35.751us 4576 4.56 n/a n/a 2251 6
RSA-1024 [41] XCHVLX30T 450 1,024 1,520ps 684,000  0.67 n/a  n/a 3,237 54
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5. Microcontroller Results

Encoder

= \ery frequent memory access (>50% of the runtime)
" 0.8s@32Mhz

Decoder

= Shifting sparse poly in 720 cycles

= Adding sparse poly to syndrome in 2,200 cycles

= Very frequent memory access and looping over and over again
(10 iterations over 2*4800 rows - 100k polynomial shifts)

= 2.7sec@32Mhz ®

Platform SRAM Flash Cycles/Op Cycles/byte
lenc| ATxmega256 606 Byte 3,705 Byte 37,440,137 62,400
lenc unrolled]  ATxmega256 606 Byte 5,496 Byte 26,767,463 44,612
'dec] ATxmega256 198 Byte 2,218 Byte 86,874,388 146,457
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5. Microcontroller Comparison

" Much smaller than previous McEliece implementations

=  Faster and smaller than RSA

= Time/op not as good as most competitors

Scheme Platform SRAM Flash Cycles/Op Cycles/byte
This work [enc] ATxmega256 606 Byte 3,705 Byte 37,440,137 62,400
This work [enc unrolled]  ATxmega256 606 Byte 5,496 Byte 26,767,463 44,612
This work [dec] \T.\uu,&,dl)() 198 Byte 2,218 Byte 86,874,388 146,457
McEliece [enc] [13] ATxmega256 512 Byte 438 KByte 14,406,080 65,781
McEliece [dec] [13] ATxmega256 12 KByte  130.4 KByte 19,751,094 90,187
McEliece [enc]| [20] ATxmega256 3.5 KByte 11 KByte 6,358,400 39,493
McEliece [dec| [20] ATxmega256 8.6 KByte 156 KByte 33,536,000 208,298
McEliece [enc| [10)] ATxmega256 - - 4,171,734 260,733
McEliece [dec| [10] ATxmega256 - - 14,497,587 906,099
ECC-P160 [19] ATmegal 28 282 Byte 3682 Byte 6,480,000 324,000
RSA-1024 random [19] ATmegal28 930 Byte 6292 Byte 87,920,000 636,875
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6. Conclusions M

" Proposed optimized decoders and showed their advantage over
existing decoders

= High throughput FPGA and low memory footprint microcontroller
implementations of QC-MDPC McEliece with practical key sizes

= Provided another incentive for further cryptanalytical investigation
of QC-MDPC codes to establish confidence in the scheme

= Smaller Keys for Code-based Cryptography: QC-MDPC McEliece
Implementations on Embedded Devices, Stefan Heyse, Ingo von
Maurich, Tim Glneysu, Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2013, Santa Barbara, August 20-23, 2013,

to appear.
= Paper & source code (C and VHDL) available at
http://www.sha.rub.de/research/projects/code/
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