RUB

Smaller Keys for Code-based Cryptography: QC-MDPC McEliece Implementations on Embedded Devices

4th Code-based Cryptography Workshop 2013, Rocquencourt, France

Stefan Heyse, Ingo von Maurich and Tim Güneysu

Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany

June 10, 2013

Overview

- 1. Motivation
- 2. Background
- 3. Efficient Decoding of MDPC Codes
- 4. Implementing QC-MDPC McEliece
- 5. Results
- 6. Conclusions

Overview

1. Motivation

- 2. Background
- 3. Efficient Decoding of MDPC Codes
- 4. Implementing QC-MDPC McEliece
- 5. Results
- 6. Conclusions

1. Motivation

- Quantum computers solve factoring and discrete log problem
- Code-based cryptosystems McEliece and Niederreiter resist quantum attacks and can outperform classical cryptosystems
- Main drawback: large keys (often \geq 50 kByte) vs. embedded devices
- Misoczki et al. proposed quasi-cyclic medium-density parity check codes (QC-MDPC) (4800 bit pk, 80 bit security level) [MTSB12]
- Open questions
 - How does QC-MDPC McEliece perform on embedded devices?
 - Which decoders should be used?
 - Can known decoders be improved?

Overview

1. Motivation

2. Background

- 3. Efficient Decoding of MDPC Codes
- 4. Implementing QC-MDPC McEliece
- 5. Results
- 6. Conclusions

- Original McEliece uses binary Goppa codes
- Main problem: large keys
- Many proposals to use codes with more compact representations, several were broken
- [MRS00,BCG06,BCG07,BC07,BBC08] say: use low-density parity check (LDPC) codes or even quasi-cyclic LDPC codes!
- [OTD10] cryptanalyzed some (QC-)LDPC proposals
- [MTSB12] say: use (QC-)MDPC codes, they resist known LDPC attacks and give small keys!
- Not broken (yet?)

RUR

Definition 1 (Linear codes).

A binary (n, r)-linear code C of length n, dimension (n - r) and codimension r, is a (n - r)-dimensional vector subspace of F_2^n .

It is spanned by the rows of a matrix $G \in F_2^{(n-r)n}$, called a generator matrix of C.

The generator matrix is the kernel of a matrix $H \in F_2^{r*n}$ and called the parity-check matrix of C.

The codeword $c \in C$ of a vector $m \in F_2^{(n-r)}$ is given by c = mG. Given a vector $e \in F_2^n$, we obtain the syndrome $s = He^T \in F_2^r$.

RUB

Definition 2 (Quasi-cyclic codes).

A (n, r)-linear code is quasi-cyclic (QC) if there is some integer n_0 such that every cyclic shift of a codeword by n_0 positions is again a codeword.

When $n = n_0 p$, for some integer p, it is possible and convenient to have both generator and parity check matrices composed by p * p circulant blocks.

A circulant block is completely described by its first row (or column) and the algebra of p * p binary circulant matrices is isomorphic to the algebra of polynomials modulo $x^p - 1$ in F_2 .

Definition 3 (MDPC codes).

A (n, r, w)-MDPC code is a linear code of length n and co-dimension r admitting a parity check matrix with constant row weight w.

- If MDPC codes are quasi-cyclic, they are called (n, r, w)-QC-MDPC codes
- LDPC codes typically have small constant row weights (usually, less than 10)
- For MDPC codes, row weights scaling in $\mathcal{O}(\sqrt{n * \log(n)})$ are assumed

RUR

2. (QC-)MDPC McEliece

• *t*-error correcting (n, r, w)-QC-MDPC code with $n = n_0 p$, r = p

Key Generation:

- 1. Pick random words $h_i \in F_2^n$ of weight w_i such that $w = \sum_{i=0}^{n_0-1} w_i$
- 2. Define h_i as first row of parity check matrix block H_i
- 3. Obtain remaining r 1 rows by r 1 quasi-cyclic shifts of h_i
- 4. $H = [H_0|H_1| \dots |H_{n_0-1}]$ is composed of n_0 circulant blocks
- 5. Generator matrix G is of systematic form G = (I|Q),

$$\mathbf{Q} = \begin{pmatrix} (H_{n_0-1}^{-1} * H_0)^T \\ (H_{n_0-1}^{-1} * H_1)^T \\ \dots \\ (H_{n_0-1}^{-1} * H_{n_0-2})^T \end{pmatrix}$$

2. (QC-)MDPC McEliece

Encryption:

To encrypt $m \in F_2^{(n-r)}$ into $x \in F_2^n$ select error vector $e \in F_2^n$ with $wt(e) \le t$ at random. Then compute $x \leftarrow mG + e$.

Decryption:

Let Ψ_H be a *t*-error-correcting MDPC decoding algorithm. Compute $mG \leftarrow \Psi_H(mG + e)$ and extract *m* from the first (n - r) positions of *mG*.

Parameters for 80-bit equivalent symmetric security [MTSB12]: $n_0 = 2, n = 9600, r = 4800, w = 90, t = 84$

Overview

- 1. Motivation
- 2. Background

3. Efficient Decoding of MDPC Codes

- 4. Implementing QC-MDPC McEliece
- 5. Results
- 6. Conclusions

- Decoding is usually the most complex task in CBC
- Many LDPC/MDPC decoding algorithms, we focus on bit-flipping
- General decoding principle
 - 1. Compute syndrome *s* of the received codeword *x*
 - 2. Check the number of unsatisfied parity-check-equations $\#_{upc}$ associated with each codeword bit
 - 3. Flip each codeword bit that violates more than *b* equations
- Iterate until syndrome becomes zero or a predefined maximum of iterations is reached (decoding failure)
- Main difference between decoders is how threshold b is computed
 - (Pre-)compute new b for each iteration
 - $b = max_{upc}$
 - $b = max_{upc} \delta$, for some small δ

Decoder A [MTSB12]

- 1. Compute the syndrome
- 2. Compute $\#_{upc}$ for each codeword bit to determine max_{upc}
- 3. Compute $\#_{upc}$ again and flip all codeword bits that violate $\geq max_{upc} \delta$ equations
- 4. Recompute syndrome and compare to zero

Decoder B [Gal62]

- 1. Compute the syndrome
- 2. Compute $\#_{upc}$ for each bit and directly flip the current codeword bit if $\#_{upc}$ is larger than a precomputed threshold b_i
- 3. Recompute syndrome and compare to zero

Observations

- Decoder A and B recompute the syndrome after each iteration
- Syndrome computation is expensive!

Optimizations

- If #_{upc} exceeds the current threshold, the corresponding codeword bit j is flipped and the syndrome changes
- But the syndrome does not change arbitrarily!
 s_{new} = s_{old} + h_j, where h_j is the row of H corresponding to bit j
- By keeping track of which codeword bits are flipped we can update the syndrome at runtime
- \rightarrow Recomputation is not required anymore
- \rightarrow We always decode with a up-to-date syndrome

RUR

- Derived several decoders
 - Direct vs. temporary syndrome update method
 - Combined with different threshold techniques
 - Precomputed b_i as proposed by [MTSB12]
 - For $b = max_{upc} \delta$, chosing $\delta = 5$ requires the least iterations
 - Constantly check if syndrome becomes zero
- Measured 1000 random QC-MDPC codes with

 $n_0 = 2, n = 9600, r = 4800, w = 90, t = 84$ and 100,000 random decoding tries for each decoder

- Decoding failure if no success within 10 iterations
- Measured on a Intel Xeon E5345 CPU@2.33 GHz

RUR

 The following decoders require the least amount of iterations and provide the best decoding failure rates

Decoder D

- 1. Compute the syndrome
- 2. Compute $\#_{upc}$ for each bit, directly flip the current codeword bit j if $\#_{upc}$ exceeds precomputed threshold b_i and add h_j to the syndrome

Decoder F

 Same as D, but additionally compares the syndrome to zero after each update and aborts immediately if it becomes zero

Overview

- 1. Motivation
- 2. Background
- 3. Efficient Decoding of MDPC Codes

4. Implementing QC-MDPC McEliece

- 5. Results
- 6. Conclusions

4. Implementation Platforms

- Reconfigurable Hardware: Xilinx Virtex-6 FPGA
 - Powerful, up-to-date FPGA
 - (Ten-)thousands of slices, each slice contains four 6-input lookup tables (LUTs), eight FFs, and surrounding logic
 - Embedded resources such as block memories (BRAM) and digital signal processors (DSP)
- Embedded microcontroller: Atmel AVR ATxmega
 - Popular low-cost 8-bit microcontroller
 - Wide range of cryptographic and non-cryptographic applications

4. Implementing QC-MDPC McEliece

• Recall, parameters for 80-bit security are $n_0 = 2, n = 9600, r = 4800, w = 90, t = 84$

Data sizes

- 4800-bit public key
- 9600-bit sparse secret key, 90 bits set
- 4800-bit plaintext
- 9600-bit ciphertext
- Secret key and ciphertext consist of two separate 4800-bit blocks

4. FPGA Design Considerations

- Overall FPGA design goal: high speed
- Relatively small keys → store operands directly in logic, no BRAMs
- Sparsity of secret polynomials is not exploited
 - Requires to implement 90 13-bit counters
 - Increment all counters to generate the next row
 - E.g., when computing the syndrome we would have to build a 4800-bit vector from the counters and XOR this vector to the current syndrome
 - Alternatively read content of each counter and flip corresponding bits in the current syndrome
- Implemented decoder D, early exit would require variable shifts
- Simple I/O interface keeps overhead small to get close to the actual resource consumptions
- TRNG for random error generation is out-of-scope

4. QC-MDPC McEliece FPGA Implementation

QC-MDPC Encryption

- Given first 4800-bit row g of G and message m, compute c = mG and afterwards x = c + e
- G is of systematic form \rightarrow first half of c is equal to m
- Computation of redundant part Q
 - Iterate over message bit by bit and rotate *g* accordingly
 - If message bit is set, XOR current g to the redundant part
 - 3x 4800-bit registers for g, m, and Q

QC-MDPC Decryption

- Syndrome computation $s = Hx^T$, with $H = [H_0|H_1]$
 - Given 9600-bit $h = [h_0|h_1]$ and $x = [x_0|x_1]$
 - Sequentially iterate over every bit of x_0 and x_1 in parallel, rotate h_0 and h_1 accordingly
 - If bit in x_0 and/or x_1 is set, XOR current h_0 and/or h_1 to intermediate syndrome
- *s* = 0?
 - Logical OR tree, lowest level based on 6-input LUTs
 - Added registers after the second level to minimize critical path

4. QC-MDPC McEliece FPGA Implementation

- Adder tree with registers on every level accumulates overall HW
- Parallel vs. iterative design

Count $\#_{upc}$ for current row $h = [h_0|h_1]$

 \rightarrow Compute HW(s AND h_0), HW(s AND h_1)

Bit-flipping step

QC-MDPC Decryption

- If HW exceeds threshold b_i the corresponding bit in codeword x_0 and/or x_1 is flipped
- Syndrome is updated by XORing current secret poly h_0 and/or h_1
- Generate next row *h* and repeat until all rows of *H* have been checked

4. Microcontroller Design Considerations

Overall microcontroller design goal: small memory footprint Encoder

- Straightforward: copy, rotate and accumulate
- Rolled vs. unrolled public key rotation
- Whole message is not required to start encryption
- Encrypt-while-transfer allows to hide part of the encryption time

Decoder

- Generating the next h_i requires to shift 600 bytes
- But h₀ and h₁ are sparse, storing positions of set bits just needs
 45*2=90 byte
- Shifting requires to increment 45 counters
- Adding sparse to full polynomial by flipping 45 bits
- Decoder F is used

Overview

- 1. Motivation
- 2. Background
- 3. Efficient Decoding of MDPC Codes
- 4. Implementing QC-MDPC McEliece

5. Results

6. Conclusions

5. FPGA Results

- Post-PAR for Xilinx Virtex-6 XC6VLX240T
- Xilinx ISE 14.5
- Average decoding cycles
 - Iterative: 4,800 + 2 + 2.4002 * (9,620 + 2) = 27,896.7 cycles
 - Non-iterative: 4,800 + 2 + 2.4002 * (4,810 + 2) = 16,351.8 cycles

Aspect	Encoder	Decoder (iterative)	Decoder (non-iterative)
FFs	14,426 (4%)	32,974 (10%)	46,515 (15%)
LUTs	8,856 (5%)	36,554 (24%)	46,249 (30%)
Slices	2,920 (7%)	10,271 (27%)	17,120 (45%)
Frequency	$351.3\mathrm{MHz}$	$222.5\mathrm{MHz}$	190.6 MHz
Time/Op	$13.66\mu s$	$125.38\mu s$	85.79 µs
Throughput	$351.3\mathrm{Mbit/s}$	$38.3\mathrm{Mbit/s}$	$55.9\mathrm{Mbit/s}$
Encode	4,800 cycles	-	-
Compute Syndrome	-	4,800 cycles	4,800 cycles
Check Zero	-	2 cycles	2 cycles
Flip Bits	-	9,620 cycles	4,810 cycles
Overall average	4,800 cycles	27,896.7 cycles	16,351.8 cycles

5. FPGA Comparison

- Performance evaluation: Time/operation vs. Mbit/s
- PK size: 0.59 kByte vs. 100.5 kByte [37], 63.5 kByte [16][21]

Scheme	Platform j	f [MHz]	Bits	$\operatorname{Time}/\operatorname{Op}$	Cycles	Mbit/s	\mathbf{FFs}	LUTs	Slices	BRAM
This work (enc)	XC6VLX240T	351.3	4,800	13.66 µs	4,800	351.3	14,426	8,856	2,920	0
This work (dec)	XC6VLX240T	190.6	4,800	$85.79\mu s$	16,352	55.9	46,515	46,249	17,120	0
This work (dec iter.)	XC6VLX240T	222.5	$4,\!800$	$125.38\mu\mathrm{s}$	$27,\!897$	38.3	$32,\!974$	$36,\!554$	10,271	0
McEliece (enc) [37]	XC5VLX110T	163	512	$500\mu s$	n/a	1.0	n/a	n/a	14,537	75^{1}
McEliece (dec) $[37]$	XC5VLX110T	163	512	$1,\!290\mu\mathrm{s}$	n/a	0.4	n/a	n/a	$14,\!537$	75^{1}
McEliece (dec) $[16]$	XC5VLX110T	190	1,751	$500\mu s$	$94,\!249$	3.5	n/a	n/a	1,385	5
Niederreiter (enc) [21]	XC6VLX240T	300	192	0.66 µs	200	290.9	875	926	315	17
Niederreiter (dec) $[21]$	XC6VLX240T	250	192	$58.78\mu s$	14,500	3.3	$12,\!861$	9,409	3,887	9
Ring-LWE (enc) [17]	XC6VLX240T	n/a	256	8.10 µs	n/a	15.8	143,396	298,016	n/a	0^{2}
Ring-LWE (dec) [17]	XC6VLX240T	n/a	256	$8.15\mu s$	n/a	15.7	65,174	$124,\!158$	n/a	0^{2}
NTRU (enc/dec) [23]	XCV1600E	62.3	251	$1.54/1.41\mathrm{\mu s}$	96/88	163/178	5,160	$27,\!292$	14,352	0
ECC-P224 [18]	XC4VFX12	487	224	$365.10\mu{ m s}$	177,755	0.61	1,892	1,825	1,580	11^{3}
ECC-163 [33]	XC5VLX85T	167	163	$8.60\mu s$	1436	18.9	n/a	10,176	3,446	0
ECC-163 [34]	Virtex-4	45.5	163	$12.10\mu s$	552	13.4	n/a	n/a	12,430	0
ECC-163 [12]	Virtex-II	128	163	$35.75\mu s$	4576	4.56	n/a	n/a	2251	6
RSA-1024 [41]	XC5VLX30T	450	$1,\!024$	$1,520\mu s$	684,000	0.67	n/a	n/a	3,237	5^{4}

5. Microcontroller Results

Encoder

- Very frequent memory access (>50% of the runtime)
- 0.8s@32Mhz

Decoder

- Shifting sparse poly in 720 cycles
- Adding sparse poly to syndrome in 2,200 cycles
- Very frequent memory access and looping over and over again (10 iterations over 2*4800 rows → 100k polynomial shifts)
- 2.7sec@32Mhz 😕

	Platform	SRAM	Flash	Cycles/Op	Cycles/byte
[enc]	ATxmega256	606 Byte	3,705 Byte	$37,\!440,\!137$	62,400
[enc unrolled]	ATxmega256	606 Byte	5,496 Byte	26,767,463	$44,\!612$
[dec]	ATxmega256	198 Byte	2,218 Byte	$86,\!874,\!388$	$146,\!457$

5. Microcontroller Comparison

- Much smaller than previous McEliece implementations
- Faster and smaller than RSA
- Time/op not as good as most competitors

Scheme	Platform	SRAM	${f Flash}$	$\mathrm{Cycles}/\mathrm{Op}$	Cycles/byte
This work [enc] This work [enc unrolled] This work [dec]	ATxmega256 ATxmega256 ATxmega256	606 Byte 606 Byte 198 Byte	3,705 Byte 5,496 Byte 2,218 Byte	37,440,137 26,767,463 86,874,388	$62,400 \\ 44,612 \\ 146,457$
McEliece [enc] [13] McEliece [dec] [13]	ATxmega256 ATxmega256	512 Byte 12 KByte	438 KByte 130.4 KByte	14,406,080 19,751,094	65,781 90,187
McEliece [enc] [20] McEliece [dec] [20]	ATxmega256 ATxmega256	3.5 KByte 8.6 KByte	11 KByte 156 KByte	6,358,400 33,536,000	39,493 208,298
McEliece [enc] [10] McEliece [dec] [10]	ATxmega256 ATxmega256	-	-	4,171,734 14,497,587	260,733 906,099
ECC-P160 [19]	ATmega128	282 Byte	3682 Byte	$6,\!480,\!000$	324,000
RSA-1024 random [19]	ATmega128	930 Byte	6292 Byte	87,920,000	686,875

Overview

- 1. Motivation
- 2. Background
- 3. Efficient Decoding of MDPC Codes
- 4. Implementing QC-MDPC McEliece
- 5. Results
- 6. Conclusions

6. Conclusions

- Proposed optimized decoders and showed their advantage over existing decoders
- High throughput FPGA and low memory footprint microcontroller implementations of QC-MDPC McEliece with practical key sizes
- Provided another incentive for further cryptanalytical investigation of QC-MDPC codes to establish confidence in the scheme
- Smaller Keys for Code-based Cryptography: QC-MDPC McEliece Implementations on Embedded Devices, Stefan Heyse, Ingo von Maurich, Tim Güneysu, Workshop on Cryptographic Hardware and Embedded Systems, CHES 2013, Santa Barbara, August 20-23, 2013, to appear.
- Paper & source code (C and VHDL) available at

http://www.sha.rub.de/research/projects/code/

RUB

Smaller Keys for Code-based Cryptography: QC-MDPC McEliece Implementations on Embedded Devices

4th Code-based Cryptography Workshop 2013, Rocquencourt, France

Stefan Heyse, <u>Ingo von Maurich</u> and Tim Güneysu Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany

June 10, 2013

Thank you for your attention! Any Questions?

References

[BBC08] M. Baldi, M. Bodrato, and F. Chiaraluce. A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes. In R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, SCN, volume 5229 of Lecture Notes in Computer Science, pages 246–262. Springer, 2008.

[BC07] M. Baldi and F. Chiaraluce. Cryptanalysis of a New Instance of McEliece Cryptosystem Based on QC-LDPC Codes. In Information Theory, ISIT '07. IEEE International Symposium on, pages 2591–2595, 2007.

[BCG06] M. Baldi, F. Chiaraluce, and R. Garello. On the Usage of Quasi-Cyclic Low-Density Parity-Check Codes in the McEliece Cryptosystem. In Communications and Electronics, ICCE '06. First International Conference on, pages 305–310, 2006.

[BCG⁺07] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni. Quasi-Cyclic Low-Density Parity-Check Codes in the McEliece Cryptosystem. In Communications, ICC '07. IEEE International Conference on, pages 951–956, 2007.

[Gal62] R. Gallager. Low-density Parity-check Codes. Information Theory, IRE Transactions on, 8(1):21–28, 1962.

[MTSB12] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto. MDPC-McEliece: New McEliece Variants from Moderate Density Parity-Check Codes. Cryptology ePrint Archive, Report 2012/409, 2012. http://eprint.iacr.org/

References

[MRS00] C. Monico, J. Rosenthal, and A. Shokrollahi. Using Low Density Parity Check Codes in the McEliece Cryptosystem. In Information Theory, IEEE International Symposium on, page 215, 2000.

[OTD10] A. Otmani, J.-P. Tillich, and L. Dallot. Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes. Mathematics in Computer Science, 3(2):129–140, 2010.